112 research outputs found

    General solution for Hamiltonians with extended cubic and quartic potentials

    Full text link
    We integrate with hyperelliptic functions a two-particle Hamiltonian with quartic potential and additionnal linear and nonpolynomial terms in the Liouville integrable cases 1:6:1 and 1:6:8.Comment: LaTex 2e. To appear, Theoretical and Mathematical Physics 200

    On the exact solutions of the Bianchi IX cosmological model in the proper time

    Full text link
    It has recently been argued that there might exist a four-parameter analytic solution to the Bianchi IX cosmological model, which would extend the three-parameter solution of Belinskii et al. to one more arbitrary constant. We perform the perturbative Painlev\'e test in the proper time variable, and confirm the possible existence of such an extension.Comment: 8 pages, no figure, standard Latex, to appear in Regular and chaotic dynamics (1998

    Solitons from a direct point of view: padeons

    Get PDF
    AbstractA systematic approach to soliton interaction is presented in terms of a particular class of solitary waves (padeons) which are linear fractions with respect to the nonlinearity parameter ϵ. A straightforward generalization of the padeon to higher order rational fractions (multipadeon) yields a natural ansatz for N-soliton solutions. This ansatz produces multisoliton formulas in terms of an ‘interaction matrix’ A. The structure of the matrix gives some insight into the hidden IST-properties of a familiar set of ‘integrable’ equations (KdV, Boussinesq, MKdV, sine-Gordon, nonlinear Schrödinger). The analysis suggests a ‘padeon’ working definition of the soliton, leading to an explicit set of necessary conditions on the padeon equation

    Integration of a generalized H\'enon-Heiles Hamiltonian

    Full text link
    The generalized H\'enon-Heiles Hamiltonian H=1/2(PX2+PY2+c1X2+c2Y2)+aXY2−bX3/3H=1/2(P_X^2+P_Y^2+c_1X^2+c_2Y^2)+aXY^2-bX^3/3 with an additional nonpolynomial term μY−2\mu Y^{-2} is known to be Liouville integrable for three sets of values of (b/a,c1,c2)(b/a,c_1,c_2). It has been previously integrated by genus two theta functions only in one of these cases. Defining the separating variables of the Hamilton-Jacobi equations, we succeed here, in the two other cases, to integrate the equations of motion with hyperelliptic functions.Comment: LaTex 2e. To appear, Journal of Mathematical Physic

    A q-analogue of gl_3 hierarchy and q-Painleve VI

    Full text link
    A q-analogue of the gl_3 Drinfel'd-Sokolov hierarchy is proposed as a reduction of the q-KP hierarchy. Applying a similarity reduction and a q-Laplace transformation to the hierarchy, one can obtain the q-Painleve VI equation proposed by Jimbo and Sakai.Comment: 14 pages, IOP style, to appear in J. Phys. A Special issue "One hundred years of Painleve VI

    The Bianchi Ix (MIXMASTER) Cosmological Model is Not Integrable

    Full text link
    The perturbation of an exact solution exhibits a movable transcendental essential singularity, thus proving the nonintegrability. Then, all possible exact particular solutions which may be written in closed form are isolated with the perturbative Painlev\'e test; this proves the inexistence of any vacuum solution other than the three known ones.Comment: 14 pages, no figure

    Solitary waves of nonlinear nonintegrable equations

    Full text link
    Our goal is to find closed form analytic expressions for the solitary waves of nonlinear nonintegrable partial differential equations. The suitable methods, which can only be nonperturbative, are classified in two classes. In the first class, which includes the well known so-called truncation methods, one \textit{a priori} assumes a given class of expressions (polynomials, etc) for the unknown solution; the involved work can easily be done by hand but all solutions outside the given class are surely missed. In the second class, instead of searching an expression for the solution, one builds an intermediate, equivalent information, namely the \textit{first order} autonomous ODE satisfied by the solitary wave; in principle, no solution can be missed, but the involved work requires computer algebra. We present the application to the cubic and quintic complex one-dimensional Ginzburg-Landau equations, and to the Kuramoto-Sivashinsky equation.Comment: 28 pages, chapter in book "Dissipative solitons", ed. Akhmediev, to appea
    • …
    corecore